<span>Итак, что мы имеем: треугольник АВС, где угол А=90 градусов, и высота АD делит его на два прямоугольных треугольника. </span>
<span>Начнем с того, что попроще: треугольник ADB (угол D=90 градусов), катет AD=12, гипотенуза АВ=20, по теореме Пифагора 20^2=12^2+DB^2 </span>
<span>Таким образом, сторона DB=16 </span>
<span>Теперь рассмотрим второй треугольник, получившийся при делении большого треугольника высотой: </span>
<span>CDA, где угол D =90 градусов. </span>
<span>Катет AD=12, катет DC=X, гипотенуза AC=Y </span>
<span>По все той же теореме Пифагора получаем: </span>
<span>Y^2=12^2+X^2 </span>
<span>Теперь рассмотрим исходный треугольник АВС </span>
<span>Катет АВ=20, катет АС=Y (смотри выше), гипотенуза СВ=X+16 </span>
<span>По теореме Пифагора получаем: </span>
<span>20^2+Y^2=(X+16)^2 => Y^2=X^2+32X+256-400 => Y^2=X^2+32X-144 </span>
<span>подставляем в уравнение Y^2=12^2+X^2 выраженное значение Y, получаем: </span>
<span>X^2+32X-144=12^2+X^2 </span>
<span>32X=288 </span>
<span>X=9 </span>
<span>Таким образом, гипотенуза ВС=16+9=25 </span>
<span>Катет АС=15 </span>
<span>Косинус угла С равен отношению прилежащего катета к гипотенузе, т.е. cos C= AC/CB=15/25=3/5</span>
<em>Используем формулу Герона. Найдем полупериметр, он равен (2*√41+10)/2=√41+5</em>
<em>Площадь √((√41+5)*(√41-5)*(5)*(5))=5*√16=5*4=</em><em>20/см²/</em>
15*12=180(см.кв)
Ответ:180кв см площадь прямоугольника
Если провести меньшую диагональ ромба, то она разделит тупые углы ромба пополам. Тупой угол ромба равен 180-60 = 120°, половины его по 60°. У нас получилось два треугольника, углы которых равны по 60°. Они равносторонние, значит меньшая диагональ и стороны ромба равны по 8.
<span>Доказать:1+ctg ^ 2 альфа = 1/sin^2 альфа </span>