Пусть дана трапеция ABCD, BC||AD AC=3, BD=5среднняя линия трапеции EF=2, по свойству средней линии трапецииBC+AD=2*EF=2*2=4Пусть диагонали пересекаются в точке ОПусть BC=x см, тогда AD=4-x см.Опустим высоты BK и CN (точки K и N лежат на основании AD), тогда KN=BC=xПусть AK=y, тогда DN=4-x-x-y=4-2x-yAN=x+yDK=4-x-yВысоты трапеции равны, поэтому5^2-(4-x-y)^2=3^2-(x+y)^2Сделаем заменуx+y=t25-(4-t)^2=9-t^225-16+8t-t^2=9-t^29+8t=98t=0t=0значит рисунок сделано неверно, и точка К лежит вне трапецииПусть AK=y, AD=4-x, KN=BC=x, KD=4-x+y=4-(x-y), AN=x-yтогда используя равенство высот5^2-(4-(x-y))^2=3^2-(x-y)^2Сделаем заменуk=x-y25-(4-k)^2=9-k^225-16+8k-k^2=9-k^29+8k=98k=0k=0а значит x=yзначит AN=0 и точки А и N совпдают, и диаональ АС является высотой трапецииПлощадь трапеции равна произведению средней линии трапции на ее высоту, поэтомуплощадь данной трапеции равна EF*AC=2*3=6<span>ответ: 6 </span>
1)3214*18=57852
2)20814*21=437094
3)437094/7=62442
4)12561+57852=70413
5)70413+62442=132855
105 разделить на 15 получиться 7