Сложно, надо время.Минут через 5 напишу ответ
2x-5i+7y+2xi=-12-3yi
(2x+7y)+i(2x-5)=-12-3yi
{2x+7y=-12
{2x-5=-3y⇒2x+3y=5
отнимем
4y=-17
y=-4 1/4
2x=-12-7*(-4 1/4)=-12+29 3/4=17 3/4
x=17 3/4:2=71/8=8 7/8
16х^2-8х=-1
8х(2х-1)=-1
8х=-1 х=-1/8
2х-1=1
2х=1+1
2х=2
х=1
При условии, что правая части уравнения , возводим в квадрат левую и правую части уравнения.
Произведение равно нулю, если хотя бы один из множителей равен нулю.
откуда
откуда
Теперь проверим на условии когда уравнение имеет решений, а когда нет.
- зависит от знаменателя, это верно при
также зависит от знаменателя, верно при b>-3
Окончательный вывод:
При уравнение имеет два действительных корня, а именно .
При уравнение имеет одно единственное решение, то есть корень
При уравнение действительных корней не имеет.
При уравнение имеет единственный корень
1) Для начала нужно найти общий знаменатель у тех чисел, что в скобках:
он будет y(x+y), т.к у первой дроби не хватает (x+y), а у второй y, то число в числители умножаем на то, чего не хватает :
(1 · (х+у) - 1 · у ) - это числитель,
а в знаменателе уже пишем общий числитель, который нашли ранее, т.е у(х+у): вот так:
(1 ·(х+у) -1 · у / у(х+у)
теперь в числители нужно раскрыть скобки
(х+у - у) - это новый числитель, но и тут нужно упростить, т.к +у и -у -их нужно сократить, в итоге в числители остается только х, а в знаменатели у(х+у) вот так:
х/ у(х+у)
теперь переходим ко второму действию, а именно , нам нужно получившуюся дробь х/у(х+у) разделить на дробь х/у
Для этого нужно дробь перевернуть и произвести умножение (сокращение)
х/у(х+у) ·у/х после сокращения остается 1 /х+у это и есть ответ