3a+b=x, 3a-b=y
x²-y²=(x-y)(x+y)=
=(3a+b-(3a-b)(3a+b+3a-b)=
=(3a+b-3a+b)(6a)=2b*6a
12ab+9a²b²-6ab+1=
=9a²b²+6ab+1=(3ab+1)²
Составим уравнение:
20-3x-(4-7x)=4
Раскрываем скобки
20-3x-4+7x=4
Приводим подобные:
7x-3x=4+4-20
4x=-12
x=-12/4
x=-3
Ответ:x=-3
Подставим х. 25+5m-5=0 разделим все на 5. 5+m-1=0=>> m=-4
a) cos(a-b) - cos(a+b) = cos(a)*cos(b) + sin(a)*sin(b) - (cos(a)*cos(b) - sin(a)*sin(b)) = cos(a)*cos(b) + sin(a)*sin(b) - cos(a)*cos(b) + sin(a)*sin(b) = 2sin(a)*sin(b)
b) sin(2a) + cos(2a) + 1 = 2*sin(a)*cos(a) + cos²(a) - sin²(a) + cos²(a) + sin²(a) = 2*sin(a)*cos(a) + 2*cos²(a) = 2*cos(a)*(sin(a) + cos(a))
sin() = -
= arcsin(-) + 2πκ, κ∈Ζ
или
= π - arcsin(-) + 2πn, n∈Ζ
= - + 2πκ, κ∈Ζ
= π + + 2πn, n∈Ζ
= + 2πn, n∈Ζ
x₁ = - + 6πκ, κ∈Ζ
x₂ = + 6πn, n∈Ζ
Отбор корней произведем с помощью неравенств.
x₁: 0 ≤ - + 6πκ ≤ 3π
≤ 6πκ ≤ 3π +
≤ 6πκ ≤
≤ 6κ ≤
≤ κ ≤
Так как κ∈Ζ, то κ∈∅
x₂: 0 ≤ + 6πn ≤ 3π
- ≤ 6πn ≤ 3π -
- ≤ 6πn ≤ -
- ≤ 6n ≤ -
- ≤ n ≤ -
Так как n∈Ζ, то n∈∅ ⇒ нет корней на данном промежутке