Sin3x=cos3x|:cos3x≠0
tg3x=1
3x=П/4+Пn, n∈Z
x=П/12+Пn/3, n∈Z
[0;4]
x1=П/12+П*0/3=П/12∉[0;4]
x2=П/12+П*1/3=П/12+4П/12=5П/12∈[0;4]
x3=П/12+П*2/3=П/12+8П/12=9П/12∈[0;4]
x3=П/12+П*3/3=П/12+12П/12=13П/12∈[0;4]
x4=П/12+П*4/3=П/12+16П/12=17П/12∉[0;4]
Ответ: 5П/12; 9П/12; 13П/12
Найдем пределы интегрирования
5x-x²=0
x(5-x)=0
x=0 x=5
Приравнивая каждый множитель , к каждому соответствующему