Пусть x см - начальная ширина прямоугольника, тогда (x+6)см - начальная длина прямоугольника
Составим и решим уравнение:
3x*(x+6)=(x+12)*((x+6)+9)
3x^2+18x=(x+12)*(x+15)
3x^2+18x=x^2+15x+12x+180
2x^2-9x-180=0
D=b^2-4*a*c
D=(-9)^2-4*2*(-180)=81+1440=1521
x=((-b)+-sqrt(D))/2*a=(9+-39)/4
x1=12 (см) - начальная ширина прямоугольника
x2=-7,5 (не удовлетворяет условию задачи)
2) 12+6=18 (см) - начальная длина прямоугольника
3) 2*(12+18)=60 (см) - периметр первоначального прямоугольника
Ответ: 60 см
0,4х=6
х=15
15-100%
у-60%
у=15*60/100=9
ответ 9
b1 = 512; bn = 1; Sn = 1023;
Sn = (bn · q - b1)/(q - 1)
1023 = (q - 512)/(q - 1)
1023q - 1023 = q - 512
1022q = 511
q = 1/2
bn = b1 · q^(n - 1) 1 = 512 · (1/2)^(n -1) 1/512 = 1/2^(n - 1)
1/2^9 = 1/2^(n - 1)
9 = n - 1
n = 10
Ответ: n = 10; q = 1/2
Вот не за что))))))))))))