Начало
Сними трубку
набери номер
дождись гудка
гудки длинные?
передай сообщение
дождись ответа
положи трубку
конец
в ромбе всегда стоит вопрос.
A) Алгоритм такой:
Ввод начальных матриц A(4; 4); B(3; 3)
Цикл по i от 1 до 4 для матрицы A(4; 4)
Вызов процедуры замены элементов матрицы с параметром i.
Конец цикла
Цикл по i от 1 до 3 для матрицы B(3; 3)
Вызов процедуры замены элементов матрицы с параметром i.
Конец цикла
Вывод обоих матриц
Конец основной программы
Процедура замены для матрицы M(k; k)
Ввод номера текущей строки n
Q = M(n; n)
M(n; n) = M(n; k-n+1)
M(n; k-n+1) = Q
// Здесь i - это текущая строка, k - количество строк в матрице. //
Конец процедуры.
b) Алгоритм такой:
Ввод начальных векторов G = (g1; g2; g3; g4); D = (d1; d2; d3; d4)
Вызов процедуры вычисления длины вектора S1 = P(|G|)
Вызов процедуры вычисления длины вектора S2 = P(|D|)
S = (S1 + S2)/2
Вывод результата S
Конец основной программы
Процедура вычисления длины вектора A(a1; a2; a3; a4)
P = sqrt(a1^2 + a2^2 + a3^2 + a4^2)
Конец процедуры
c) Алгоритм такой:
c = 1,23
Цикл по а от 2 до 8
// так удобнее, чем цикл от 0,2 до 0,8 с шагом 0,1 //
x = COS ( (0.1*a + c)/3.178)
y = 0.7*COS (0.1*a - 1.27)
x1 = Arcsin(x)
y1 = Arcsin(y)
xy1 = Arcsin(x + y)
// Здесь Arcsin (t) - это пользовательская функция, которую мы сами определяем в отдельной процедуре. //
z = x1 = y1 + LOG (ABS (xy1))
Вывод очередного значения z
Конец цикла по а
Конец основной программы
Процедура вычисления Arcsin (t)
// Дальше сложность, потому что в языках программирования очень редко встречается функция arcsin(x), обычно только sin(x), cos(x), atan(x). //
// Поэтому вспоминаем тригонометрию. arcsin t = arctg ( t/√(1-t^2) )
Arcsin (t) = ATAN (t / SQRT (1 - t*t))
Конец процедуры
Не знаю, зачем все так усложнять, по-моему нужно у одной хозяйки вычесть 1 л (5-1) молока и отдать его второй хозяйке (3+1), у них как раз станет по 4 л. Не знаю зачем тут еще 2-литровый бидон
var i,s:integer;
begin
for i:=1 to 10 do s:=s+i;
writeln (s)
end.