Задана однородная система лин. уравнений. Она всегда совместна, то есть имеет решения. Одним из решений всегда является тривиальное (нулевое) решение. Определим, сколько решений имеет система. Приведём систему к ступенчатому виду с помощью элементарных преобразований матрицы системы.
Система имеет ранг = 3 , а количество неизвестных 6 (3<6) ⇒ система имеет бесчисленное множество решений (она явл. неопределённой). Выбираем базисные неизвестные, это будут х₁ , х₂ , х₃ , т.к. определитель матрицы, составленной из коэффициентов перед этими неизвестными отличен от 0 .
Остальные неизвестные: х₄ , х₅ , х₆ - свободные неизвестные , они могут принимать произвольные значения. Выразим базисные неизвестные через свободные.
Составляем систему:
<span>х+у=25 </span>
<span>2(у-2)=х-5 </span>
<span>х - на первом кусте сначала </span>
<span>у - на втором </span>
<span>получается </span>
<span>х=17 на первом</span>
<span>у=8 на втором</span>
Х-1
0
Х
1
ТОГДА Х ПРЕНАДЛЕЖИТ ОТ ИНУС БЕЗКОНЕЧНОСТИ ДО 1 (ОБЪЕДИНИТЬ) ОТ 1 ДО ПЛЮС БЕСКОНЕЧНОСТИ
1 НИ ГДЕ НЕ ВКЛЮЧАЯ
В дроби мы можем домножить числитель и знаменатель (над и под чертой) на одно и то же число без изменения значения дроби.
Таким образом,
1) <u>3</u> / <u>2√6</u> = <u>(3 * √6)</u> / <u>(2 * √6 * √6)</u> = <u>(3 * √6)</u> / <u>(2 * 6)</u> = <u>3√6</u> / <u>12</u>
2) В выражении √14 - 2 можно избавиться от радикала с помощью разности квадратов (√14)² - 2² = (√14 - 2)(√14 + 2). Не хватает только (√14 + 2), на которую и домножаем:<u> (10 * (√14 + 2))</u> / <u>((√14)² - 2²)</u> = <u>10 * (√14 + 2)</u> / <u>(14 - 4)</u> =<u>10 * (√14 + 2)</u> / <u>10</u>= √14 + 2