Решение
y = 3cosx - 1/(7x - x⁸)
y` = - 3sinx - [(7x - x⁸)⁻¹]` = - 3sinx + (7 - 8x⁷)/(7x - x⁸)²
Обозначим шестизначное число как 1abcde, а число, полученное перестановкой цифры 1 на место единиц как abcde1.
Разложим оба числа по разрядам.
1abcde=1*100000+a*10000+b*1000+c*100+d*10+e
abcde1=a*100000+b*10000+c*1000+d*100+e*10+1
По условию задачи второе число ровно в три раза больше первого, т.е.
a*100000+b*10000+c*1000+d*100+e*10+1=3(100000+a*10000+b*1000+c*100+d*10+e)
a*100000+b*10000+c*1000+d*100+e*10+1=300000+a*30000+b*3000+c*300+d*30+
+3e
(100000-30000)a+(10000-3000)b+(1000-300)c+(100-30)d+(10-3)e=
=300000-1
70000a+7000b+700c+70d+7e=299999
7(10000a+1000b+100c+10d+e)=299999|:7
10000a+1000b+100c+10d+e=42857
Отсюда, a=4, b=2, c=8, d=5, e=7
Итак, искомое число <u>142857</u>
Ответ: b₄=-81.
Объяснение:
{b₁=3
{b₃+b₅=270
b₁q²+b₁q⁴=270
b₁*(q²+q⁴)=270
3*(q²+q⁴)=270 |÷3
q⁴+q²=90
q⁴+q²-90=0
Пусть q²=t≥0 ⇒
t²+t-90=0 D=1²+4*90=1+360=361 √D=19
t₁=-10 ∉
t₂=9 ⇒
q²=3²
q=±3.
Так как b₁>0, b₃>0, b₅>0 ⇒ b₂<0, b₄<0 ⇒
q=-3
b₄=b₁q³=3*(-3)³=-81.