8sin^2x-2cosx-5=0,
8(1-cos^2x)-2cosx-5=0,
-8cos^2x-2cosx+3=0,
8cos^2x+2cosx-3=0,
cosx=t,
8t^2+2t-3=0,
D=100,
t1=-3/4,
t2=1/2,
cosx=-3/4,
x=-+arccos(-3/4) +2pi*k, kєZ,
x=-+(pi-arccos(3/4)) +2pi*k, kєZ,
cosx=1/2,
x=-+arccos(1/2)+2pi*k, kєZ,
x=-+pi/3 + 2pi*k, kєZ
Ответ:
h=gt^2/2
домножаем на |(*2):
2h=gt^2
t^2=2h/g
t=корень из 2h/g
Cos(x) >= 1/2
-p/3+2n*p <= x <= p/3 + 2n*p
Y' =((2x-8)*(x-3) - 1*(x^2 - 8x + 15))/ (x-3)^2 = (x^2 - 6x + 9)/(x-3)^2 = 1
при любом значении х, т.о. и при х=2 у'(2)=1