3cos²x-sin²x+4sinx=0
Представляем в следующем виде:
3(1-sin²x)-sin²x+4sinx=0
3-3sin²x-sin²x+4sinx=0
Для простоты делим на (-1)
-4sin²x+4sinx+3=0 |*(-1)
И в итоге --
4sin²x-4sinx-3=0
Введём новую переменную: sinx=t, тогда получаем обычное квадратное у-е:
4t²-4t-3=0
D= 16+4*4*3= 16+48 = 64
x₁= 4+8/8 = 12/8 = 3/2
x₂= 4-8/8 = -4/8 = -1/2
У нас получились два корня, отбрасываем лишнее:
1) sinx= 3/2
Пустое множество, решения отсутствуют, так как -1≤sinx≤1, т.е. синус не может быть больше чем 1 или меньше -1.
2) sinx= -1/2 - решения есть.
x= (-1)^k arcsin(-1/2)+πk, где k∈Ζ
x=(-1)^k+1 arcsin1/2 + πk, где k∈Ζ
x=(-1)^k+1 π/6 + πk, где k∈Ζ
Ответ:
Объяснение:
5. А) - 2); Б) - 3); В) - 1).
Е) -6a + 5a - x +4 = -a - x + 4
ж) 23x - 23 + 40 + 4x = 27x + 17
з) -a + x + 1,1a - 1,3x = 0,1a - 0,3x
и) -12p + 3k + 3,2p - 2,3k = -8,8p + 0,7k
к) 0,5a - 2/3 b - 2/5 a -1/3 b = 0,5a - 0,4a - b = 0,1a - b
В тех интервалах, в которых ф-ция монотонна, первая производная сохраняет знак.Если знак "+2, то ф-ция монотонно возрастающая, а если знак "-", то ф-ция монотонно убывающая.
у=х³/3-5х²/2+6х-19 ( в условии у вас ошибка, во втором слагаемом не х³,а х²)
у¹=3х²/3-5*2х/2+6=х²-5х+6=0
х₁=2, х₂=3
Проверим три интервала: (-∞;2) , (2;3) , (3;+∞).
Знаки производной в 1-ом и 3-ем интервалах "+", а во втором интервале производная отрицательна ⇒ Функция возрастает на (-∞;2) и (3;+∞). Функция убывает при х∈(2;3).