1) 1 случай a=0, то уравнение примет вид: (n+1)x + 1=0
x=-1/(n+1), отсюда видно, что n-любое действительное число, кроме n= -1( ибо в знаменателе будет ноль)
2) 2 случай a неравно 0
тогда имеем: ax^2+(n+1)x +1=0, чтобы уравнение имело имело решения дистриминант должен быть больше или равнятся нулю.
D=(n+1)^2 -4a>или равно нулю
(n+1)^2> или = 4а
отсюда видно, что число в квадрате всегда будет больше или равно нулю, если а будет больше или равно нулю
Значит n-любое, если а>или=0
ответ: 1) n- любое , кроме n=-1. 2) n- любое, если а> или=0( вот тут совнемаюсь немного)
Ответ: значение дроби равно 0, при условии, что x=3.
Объяснение: подставим вместо "x" тройку и получим: 3-3 делённое на 5. Получается 0/5 = 0
Могу решить только пятое задание . Найти корень уравнения:
(2х+7)^5=1/32
(2х+7)^5=(1/2)^5
(2х+7)=у
у^5==(1/2)^5
у=1/2
2х+7=1/2 2х=1/2-7 х=-3целых 1/4=-3,25
х=-3,25