Вот я решила с помаши photo math
Искать будем так - найдем частные производные функции, приравняем их к нулю и составим систему, найдем решение этой системы - стационарную точку, далее составим гессиан и по нему определим характер этой точки: если гессиан положительно определен, то стационарная точка есть точка минимума функции (локального или глобального), а если гессиан отрицательно определён, то стационарная точка есть точка максимума функции (локального или глобального). Так вот, если эта точка оказалась минимумом, то просто подставим ее в функцию, найдем ее значение и это будет ответ.
Гессиан состоит из констант, не зависящих от аргументов, поэтому данная функция имеет один глобальный экстремум. А так как гессиан положительно определен (оба главных минора матрицы положительные - 2 и 2*2-0*0=4), то полученная стационарная точка есть точка глобального минимума.
'
Ответ - <span>наименьшее значение функции = 6</span>
=-0.09×(-11/3):(1.02-1,1)=0.09×(-11/3):(-0.08)=0.01×(-11/3)=1/100×(-11/3)=
-11/300
Как-то так
Апрооошгггнеепмттьллорррлшшл