Ответ:
(Q^2)/(2Q-1)
Объяснение:
Пусть q - знаменатель прогрессии
Q = 1/1-q
1-q = 1/Q
q = 1 - 1/Q
Если вместо всех членов прогрессии взять их квадраты, получится тоже бесконечно убывающая геометрическая прогрессия со знаменателем q^2
Тогда её сумма равна 1/(1-q^2) = 1/((1-q)(1+q)) = 1/((1/Q)(2-1/Q)) = Q^2/(2Q-1)
4,27~4,3; . |4,27-4,3|=|-0,03|=0,03
17,032~17. |17,032-17|=|0,032|=0,032
9,752~9,8. |9,752-9,8|=|0,048|