Решение смотри на фотографии
1). В числителе стоит формула квадратов: (6а-1)^2;
В знаменателе записываем: 6а^2+12а-а-2. Выносим общие множители: 6а(а+2) - (а+2). Дальше: (6а-1)*(а+2) (почему так? Потому что (а+2) - общая скобка, а 6а и -1 это общие множители этих скобок.);
(6а-1) сократится, будет 6а-1/а+2;
6а - 1/а + 2.
2). -х^2 - 2х + 8 》0;
D = 4 - 4*(-1)*8 = 4 + 32 = 36;
x1 = 2; x2 = -4.
Ветви параболы направлены вниз. Без чертежа неравенство не имеет смысла! Функция больше 0 => всё, что выше и есть решения неравенства.
Ответ: [-4;2] или -4《 х 《 2.
Пусть данная прямая пересекает оси координат в точках
. Тогда:
Уравнение прямой на плоскости:
Подставим наши точки Q и W:
Докажем по индукции, что 24^n - 1 делится на 23 при всех натуральных значениях n.
<u>База</u>. n = 1: 24^1 - 1 = 24 - 1 = 23 делится на 23.
<u>Переход</u>. Пусть это выполняется при некотором n = k, докажем, что тогда выполняется и при n = k + 1.
24^(k + 1) - 1 = 24 * 24^k - 1 = 24 * (24^k - 1) + 24 - 1 = 24 * (24^k - 1) + 23
По предположению индукции 24^k - 1 делится на 23, тогда и вся сумма делится на 23, как и требовалось.
_________________________
Итак, 24^n - 1 делится на 23, а так как должно получиться простое число, то оно равно 23.
24^n - 1 = 23
n = 1
<em>Ответ</em><em />. n = 1