Ще раз сфотографуй друге завдання, що тобі потрібно
я розв*яжу
тому що на цій фотографї погано видно
Ответ:
Объяснение:
Дважды возводим обе части в квадрат и получаем легкое уравнение относительно х. Можно еще сделать проверку, подставив корни в исходное уравнение.
Если 5 это степень , то получается:
(4a^5-3b)*2b-3b*(12a^5-4b)
8a^5*b-6b^2-36a^5*b+12b^2
-28a^5*b-6b^2+12b^2
Разделим обе части неравенства на 4^x. Это показательная функция, всегда положительна, значит, я могу без страха поделить на неё. Причём знак неравенства останется тем же(мы неравенство делим на положительное выражение).
9^x / 4^x + 2 * 6^x / 4^x - 3 > 0
Преобразуем степени, сведём всё к квадратному неравенству:
(3/2)^2x + 2 * (3^x * 2^x) / 2^2x - 3 > 0
(3/2)^2x + 2 * (3/2)^x - 3 > 0
Здесь я воспользовался тем, что 6^x = (3 * 2)^x = 3^x * 2^x, а при делении степеней с одинаковы основанием основание переписывается, показатели вычитаются.
Теперь введём замену. Пусть (3/2)^x = t, t > 0
t^2 + 2t - 3 > 0
решаем полученное квадратичное неравенство.
(t - 1)(t+3) > 0
Решением неравенства служит
t < -3 или t > 1
Возвращаемся к переменной x.
Помним, что показательная функция не может быть меньше -3, значит, первое из неравенств не имеет решений. Решаем второе неравенство:
(3/2)^x > 1
Как решать простейшие показательные неравенства, я не напоминаю.
(3/2)^x > (3/2)^0
x > 0 - это ответ.