1) x^2 - (4x+2x)+8= x^2 - 4x - 2x+8=(x^2 - 4x) - (2x - 8)=x(x - 4) -2()x - 4)=(x - 4)(x - 2)
2) x^2 - 2x - (16+8)= (x^2 - 16) - (2x - 8)= (x - 4)(x+4) - 2(x - 4)=(x - 4)(x+4 -2)=(x - 4)(x+2)
3) <u>y^6 </u> +0,4^3=( (0,2y)^2+0,4)( (0,2y)^4 - 0,016y^2 + 0,16) =
5^6
4) 5а+аb^2 - a^2b - 5b=(5а- 5b)+(аb^2 - a^2b)=5(а- b)- ab(a - b)=(5 - ab)(a - b)
6a²b³ 3b
-------- = -------
8a⁴b² 4a²
1) 2*2^(2x) - 5*2^x + 2 = 0
2^x =y, y > 0
2y^2 - 5y + 2 = 0
D= 25-4*2*2 = 9
y1 = (5-3)/4 = 1/2
y2 = (5+3)/8 = 2
2^x = 1/2
2^x = 2^(-1)
x1 = - 1
2^x = 2
x2 = 1
2) 3*(3^(2x) - 10*3^x + 3 = 0
3^x = y, y > 0
3y^2 - 10y + 3 = 0
D = 100 - 4*3*3 = 64
y1 = (10--8)/6 = 1/3
y2 = (10+8)/6 = 3
3^x = 1/3
3^x = 3^(-1)
x1 = -1
3^x = 3
x2 = 1
3) 4*(1/4)^(2x) + 15*(1/4)^x - 4 = 0
(1/4)^x = y, y > 0
4y^2 + 15y - 4 = 0
D 225 - 4*4*4 = 289
y1 (-15 - 17)/8 = -2
y2 = (-15 + 17)/8 = 1/4
(1/4)^x = - 2 не удовлетворяет условию: y> 0
(1/4)^x = 1/4
x = 1
4) (0,5)^(2x) + 1,5(0,5)^x - 1 = 0
(0,5)^x =y, y > 0
y^2 + 1,5x - 1= 0
D = 2,25 - 4*1*1 = 6,25
y1 = (-1,5 - 2,5) /2 = - 2
y2 = (-1,5 + 2,5)/2 = 1/2
(1/2^x = - 2 не удовлетворяет условию: y > 0
(1/2)^x = 1/2
x = 1
Ответ:
Объяснение:
(−6)^4+75=(-6)×(-6)×(-6)×(-6)+75=1296+75=1371
(−1,2)^3−0,45=(−1,2)×(−1,2)×(−1,2)-0,45=-1,728-0,45=-2,178