если b или с равны нулю то такое уравнение наазывается: <em>неполное квадратное уравнение</em>
Найдём, сколько трёхзначных чисел делится без остатка на 18.
Всего трёхзначных чисел 1000 - 100 = 900.
Из них, кратных 18: 900/18 = 50.
Для надёжности, определим это число другим способом. Первое трёхзначное число, кратное 18, - это 108, а последнее - 990. Все числа кратные 18 составляют арифметическую прогрессию с шагом 18. Используя формулу энного члена арифметической прогрессии:
У нас
,
и d = 18, подставляем и находим n - количество таких чисел.
Итак, всего возможных вариантов написания трёхзначного числа, делящегося на 18, равно 50. Мише даётся 6 попыток угадать написанное Катей число. По классической формуле вероятности имеем:
Ответ: 0,12