Y'=(2/(x^2-4x+10))'= - 2(2x-4)/(x^2-4x+10)^2
- 2(2x-4)/(x^2-4x+10)^2=0 ОДЗ
- 2(2x-4)=0 x^2-4x+10≠0
2х=4 D=16-40= - 24 <0 - нет решения
х=2
Строим прямую интервалов. До х=2 функция будет иметь положительные значения, после отрицательные, значит точка х=2 является максимумов функции. Поэтому найдем у(2).
у(2)=2/(2^2-4*2+10)=2/6=1/3
√12*√18*√216=√(12*18*216)=√(216*216)=216
Графически любая система решается следующим образом: Сначала каждое из уравнений системы записываешь в виде:
x-y=1 y=x-1 y=x-1 Пусть x=0⇒y=-1, (0;-1); x=1⇒y=0, (1;0)
x+2y=7 2y=7-2x y=3.5 -x Пусть x=0<span>⇒y=3,5, </span>(0;3,5)<span>; x=3,5⇒y=0, </span>(3,5;0)
Это две прямые, проходящие через эти две точки.
И так каждая система.
Прямые нарисуешь, можешь рассчитать точку пересечения этих прямых: просто приравниваешь уравнения друг к другу.
y=x-1; <span>y=3.5 -x</span>⇒x-1=3.5-x⇒2x=4.5⇒x=2.25⇒y=2.25-1=1.25⇒(2.25;1,25)
1013) Решается так(самый простой способ). Берешь точку(которая должна быть решением системы). На координатной плоскости ее обозначаешь и проводишь на ней две прямые, чтобы они пересекались в этой точке. На каждой прямой отметь по паре точек (это будут координаты точек,через которые проходят прямые), а потом уж вывести уравнение прямой по формуле: y=kx+b проще простого.
-3; -9; -27
Разность геометрической прогрессии q= 3
Последний пример, по-моему, дан с ошибкой, получается ахинея. Я написал так, как мне кажется должно быть. Извини, если не так