формой звезды. от центра надо ставить нож по направлению к краям правильной звёздочки.
Что-то нестандартное. Попробую помочь.
Итак
200 - производительность труда 1 бригады
(200-х) - второй
(200+6х) - третьей
Р - вся работа.
Далее
200+(200-х) = (400-х) -произв. труда 1 и 2 бригад вместе.
200+(200-х)+(200+6х) = (600 + 5х) - произв труда всех 3 бригад вместе.
1+2 сделали Р/6 работы, затратили на это
Р/6(400-х) - время на 1/6 работы
1+2+3 сделали 5Р/6 работы, затратив на это
5Р/6(600+5х) - время на 5/6 работы.
Общее время (Р/6)*(1/(400-х)+ 5/(600+5х)) - общее время, мин которого нужно найти.
То есть нужно найти мин функции
1/(400-х) + 5/(600+5х) = (600+5х+2000-5х)/((400-х)(600+5х))=2600/(400-х)(600+5х)
Так как числитель - положительная константа, мин функции достигается при макс знаменателя.
Итак, задача свелась к нахождению макс квадратного трехчлена
(400-х)(600+5х)
Это совсем просто, потому что он достигается при полусумме его корней.
х1=400 х2=-120, значит хмин=(400-120)/2 = 140.
Вот, в принципе и всё, потому что в задаче нужно найти ТОЛЬКО это значение.
Если есть желание, можешь найти и всё остальное.
PS. Перепроверь условие и арифметику, мне не нравится этот ответ, потому что уж очень неравнозначные производительности труда получаются, а именно
1 - 200
2 - 60
3 - 1300
Так в жизни не бывает, а может, я где-то ошибся. Бывает...
<u />125*81*36*10⁻⁴ 125*9*6 125*2 25
------------------------ = ------------- = --------- = ----- =2,5
9*6*27*10⁻² 27*100 100 10