57. a) \frac{ \sqrt{ (x-2)^{2} } }{x-2 } = \frac{x-2}{x-2} =1;
б) \frac{x+3}{ \sqrt{ (x+3)^{2} } } = \frac{x+3}{ч+3} =1;
b) \frac{ \sqrt{ (x+5)^{2} } }{x+5} \frac{x+5}{x+5} =1;
г) \frac{ \sqrt{( x-6)^{2} } }{x-6} = \frac{x-6}{x-6} =1;
58. 2 + √5 + 3 -√5 = 5; 4+√6 +2 -√6 = 6;
2-√7 +√7 +2 =4; √10 -4 -√10 -4 =-8;
59. 5 - √30 +6 -√30 = 11-2√30; 4-2√3 +3 -2√3 = 7 -4√3;
= 6-√42+7-√42 = 13 -2√42; 3 -2√2 +2 2√2 = 5 -4√2;
Пусть скорость первого теплохода х, тогда скорость второго теплохода х + 10.
Путь первого = 60, путь второго = 60
Время первого в пути = 60/х
Время второго в пути = 60/(х + 10)
Время второго в пути на 1 час меньше (т.к. он выехал на 1 час позже)
Уравнение:
60/х-60(х+10)=1
Приводим к общему знаменателю
60(х+10) - 60х = х(х+10)
60х+600-60х=х^2+10x
x^2+10x-600=0
решаем квадратное уравнение, получаем корни
х_1 = 20 (скорость первого теплохода)
х_2 = -30 (не удовлетворяет условию)
скорость второго теплохода = 20+10 = 30
<span>Ответ: 30 км/ч</span>
7Х + 2 > 23
7Х > 23- 2
7X > 21
X > 21: 7
Х> 3
6x+1•3x+2=9x-1•2x+5-3x
6x+3x-9x-2x+3x=-1+5-1-3
1x=1
x=1