Х₁= 3*1-1 = 2
х₂ = 3*2-1 = 5
х₃ = 3*3-1= 8
х₄ = 3*4-1 = 11
х₅ = 3*5-1= 14
Так уж и быть красавица.
Слушай и запоминай:
Переносишь прямую AM по плоскости AMC так, чтобы точки M стала на место точки L, а точка A стала на место точки O, где точка O- середина четырехугольника ABCD.
Тангенс угла OLB=2, так как это угол между прямыми, следовательно, OB=OD*2=6, где OD=ML=3, так как треугольник OLM- равносторонний.
Так как половина диагонали правильного треугольника равна 6, то сторона равна 6 корней из 2.
Теперь когда мы знаем стороны 4 треугольников мы можем найти их площадь, то есть площадь боковой поверхности пирамиды:
S(бок.пов.)= 3 корня из 2 (высота треугольника) * 3 корня из 2 (половина стороны треугольника, на которую операется высота) * 4 (количество треугольников)=72
Ответ: S(бок.пов.)=72
22/3*x=31/21 +15/7
22/3 *x=(31+45)/21;x=(76/21):(22/3)=(76*3)/(21*22)=(38*1)/(7*11)=38/77 x=38/77
Все уравнения решаются методом замены.
1) Пусть сosx=a, тогда
3*a^2-10*a+7=0 a1,2=(10±√(10^2-4*3*7))/2*3=(10±4)/6
a1=(10-4)/6=1 , то есть cosx=1 x=2*П*n, nЄZ
a2=(10+4)/6=7/3 так как -1=<cosx=<1 7/3>1 значение не подходит.
2) Преобразуем уравнение
6*cos^2 x+7*sinx-1=0 6*cos^2 x=6-6*sin^2x заменяем
6-6*sin^2 x+7*sinx-1=0 -6*sin^2 x+7*sinx+5=0
Пусть sinx=a -6*a^2+7*a+5=0 a1,2=(-7±√(7^2-4*(-6)*5))/2*(-6)=
=(-7±13)/-12
a1=(-7-13)/(-12)=20/12=5/3 не подходит
а2=(-7+13)/(-12)=6/(-12)=-1/2 sinx=-1/2 x=(-1)^n*7*П/6+П*n, nЄZ
3) 3*сos^2 x+5*sinx+5=0 3*cos^2 x=3-3*sin^2 x
3-3*sin^2 x+5*sinx+5=0 (*(-1)) 3*sin^2 x-5*sinx-8=0
Пусть sinx=a
3*a^2-5*a-8=0 a1,2=(5±√(5^2+4*3*8))/2*3=(5±11)/6
a1=(5-11)/6=-1 sinx=-1 x=-П/2+2*П*k, kЄZ
a2=(5+11)/6=16/6=8/3>1 не подходит
4) Пусть cosx=a 12*a^2-20*a+7=0 a1,2=(20±√(20^2-4*12*7))/2*12=
=(20±8)/24
a1=(20-8)/24=12/24=1/2 cosx=1/2 x=П/3+2*П*k, kЄZ
a2=(20+8)/23=28/24>1 не подходит
5) 5*сos^ x-12*sinx-12=0 5cos^2 x=5-5*sin^2 x
5-5*sin^2x-12*sinx-12=0 (*(-1) 5*sin^2 x+12*sinx+7=0
Пусть sinx=a 5*a^2+12*a+7=0 a1,2=(-12±√(12^2-4*5*7))/2*5=(-12±2)/10
a1=(12-2)/10=1 sinx=1 x=П/2+2*П*k, kЄZ
a2=(12+2)/10=14/10>1 не подходит
Надеюсь при вычислениях ошибку не допустил