А) [3х/(3х-у)] - [х/(3х+у)] - [2ху/(9х^2-у^2)]=
={[3х(3х+у)]/[(3х-у)(3х+у)]} - {[х(3х-у)]/[(3х-у)(3х+у)]}-{2ху/(3х-у)(3х+у)}=
=[9х^2+3ху-3х^2+ху-2ху]/(3х-у)(3х+у)=
=(6х^2-2ху)/(3х-у)(3х+у)=
=(2х(3х-у))/(3х-у)(3х+у)=2х/(3х+у)
б) (9-6а)/(а^3-27) - (а-3)/(а^2+3а+9)=
=(9-6а)/(а-3)(а^2+3а+9) - (а-3)/(а^2+3а+9)=
=(9-6а-а^2+6а-9)/(а-3)(а^2+3а+9)=
=-а^2/(а^3-27)=а^2/(27-а^3)
<span>5^x·3^y=135</span>
<span> 3^y-5^x+1=2</span>
<span>
</span>
<span>5^x·3^y=135</span>
<span> 3^y-5^x=2-1</span>
<span>
</span>
<span>5^x·3^y=135 Замена переменных 5^x=t , 3^y=u t*u=135</span>
<span> 3^y-5^x=1 u+t=1</span>
<span>
</span>
<span>t*u=135</span>
<span> u=1-t</span>
<span>подставляем в первое, имеем:</span>
<span>t(1-t)=135</span>
<span>t-t^2=135</span>
<span>t^2 -t +135=0</span>
<span>D=1-4*135 <0</span>
не имет решений
Ответ и решение во вкладыше