|a-c| - |a+c| - |c-a| + |-c-a| = (|a-c| - |a-c|) + (|a+c| + |c+a|) = 2|a+c|
|a-b| - |b-a| = |a-b| - |a-b| = 0
Стороны: a, b, c
(1): Т. Пифагора c^2 = a^2 + b^2
(2): Периметр: a + b + c = 60
(3): Подсчет площади двумя способами: ab/2 = 6c
Выразим c = 60 - a - b и возведём это уравнение в квадрат:
c^2 = 3600 + a^2 + b^2 + 2ab - 120a - 120b
Принимая во внимание (1) и (3), получаем
0 = 3600 + 24c - 120(a + b)
5(a + b) = c + 150
Из (2) a + b = 60 - c:
300 - 5c = c + 150
6c = 150
c = 25
Из (2) и (3) получаем систему уравнений на a и b:
{a + b = 35; ab = 300}
По теореме Виета a, b - корни уравнения
t^2 - 35t + 300 = 0
t1 = 15; t2 = 20
Ответ. 15 см, 20 см, 25 см.
Нехай одне число - х, а друге - у. ⇒
x-y=20
x+y=-91
Підсумовуємо ці рівняння:
2x=-71
x=-35,5
-35,5+y=-91
y=-55,5
Відповідь: -35,5 -55,5.
Ответ: 1) 6=5+ь или ь=6-5=1.
2) к=-1, m=2,9.
3) рисунка нет.
Объяснение: