При m = 2 числа m² + 2 = 2² + 2 = 6 > 2 и m³ + 2 = 2³ + 2 = 10 > 2 являются четными, поэтому m может быть только нечетным. Пусть m является простым нечетным числом, которое не делится на 3. Тогда либо m = 3k + 1, либо m = 3k + 2, где k - натуральное. В этом случае либо m² + 2 = (3k + 1)² + 2 = 9k² + 6k + 1 + 2 = 9k² + 6k + 3 = 3(3k² + 2k + 1), либо m² + 2 = (3k + 2)² + 2 = 9k² + 12k + 4 + 2 = 9k² + 12k + 6 = 3(3k² + 4k + 2). Получаем, что в обоих случаях число m² + 2 оказывается кратным 3 и не является простым. Рассмотрим число m³ + 2, если m нечетное и не делится на 3. В одном случае m³ + 2 = (3k + 1)³ + 2 = 27k³ + 27k² + 9k + 1 + 2 = 27k³ + 27k² + 9k + 3 = 3(9k³ + 9k² + 3k +1), а во втором случае m³ + 2 = (3k + 2)³ + 2 = 27k³ + 54k² + 36k + 4 + 2 = 27k³ + 54k² + 36k + 6 = 3(9k³ + 18k² + 12k + 2). То есть и число m³ + 2 оказывается кратным 3 при простом нечетном m, которое не делится на 3. Значит остается вариант, когда m простое нечетное число, делящееся на 3, то есть когда m = 3.
Ответ: m = 3.
7-6 11/12=1/12
Сначала отнимаем целые: 7-6=1=12/12
А потом 12/12-11/12=1/12
Ответ:1/12
3) Площадь круга по формуле
S = π*R² = 3.14*8² = 64π = 200.96 см² - ОТВЕТ
4) Площадь поверхности по формуле
a =6 b = 7.5 c = 10
S = 2*(a*b+a*c+b*c) = 2*(45 + 60 + 75) = 2*180 = 360 - ОТВЕТ