Если из точки К плоскости β проведены две наклонные, наклонная КР=х см , а наклонная KD=(x+2) cm KO⊥β, то КО - это и есть расстояние от точки К до плоскости β. ΔКОD и ΔКОР - прямоугольные. Применяя теорему Пифагора получаем уравнение: х²-5²=(х+2)²-9²
х²-25=х²+4х+4-81
4х=52
х=13
наклонная КР=13 см , а наклонная KD=13+2=15 cм
КО²=13²-5²=169-25=144, КО=√144=12см
. Диагонали равнобедренной трапеции равны, поэтому <span>OC:AO=OB:DO=</span>2:5 и, так как <span>∢BOC=∢AOD</span>, то <span>ΔAOD∼ΔBOC</span> (по второму признаку подобия треугольников: две стороны одного треугольника пропорциональны двум сторонам другого и углы, лежащие между этими сторонами равны). 2. Так как <span>ΔAOD∼ΔBOC</span>, то <span><span>ADBC</span>=<span>AOOC</span>=<span>52</span></span>. Из этого соотношения выражаем и вычисляем большее основание трапеции <span>AD</span>: <span>AD=<span><span>5×BC</span>2</span>=<span><span>5×12</span>2</span>=30</span> см. 3. Вычисляем <span>AE</span>: <span>AE=<span><span>AD−BC</span>2</span>=<span><span>30−12</span>2</span>=<span>182</span>=9</span> см. 4. Так как <span>ΔABE</span> — прямоугольный треугольник, то находим боковую сторону <span>AB</span> по теореме Пифагора: <span>AB=<span><span><span>BE2</span>+<span>AE2</span></span><span>−−−−−−−−−−</span>√</span>=<span><span><span>122</span>+<span>92</span></span><span>−−−−−−−</span>√</span>=<span><span>144+81</span><span>−−−−−−−</span>√</span>=<span>225<span>−−−</span>√</span>=15</span> см. 5. Находим периметр равнобедренной трапеции <span>ABCD</span>: <span>P(ABCD)=</span><span>2×AB+AD+BC=2×15+30+12=72</span> см.
1. Угол при вершине 180-60=120(смежные углы)
2.Углы при основании равны 180-120=60. 60/2=30
Ответ:30, 30, 120
Прямая параллельная этим прямым равноудаленная от каждой из них, между параллельными прямыми (середина растояния)
Пусть х -1 часть, тогда 5х+4х+3х=72; 12х=72; х=6; 1 сторона=5×6=30 см=> средняя линия равна 15 см ( т.к. средняя линия равна половине основания треугольника); 2 сторона=4×6=24 см=> ср.л.=12 см; 3 сторона=3×6=18 см=>ср.л.=9см
Ответ:15 см;12см;9см.