У=3-х²
у=-2х
3-х²=-2х
х²-2х-3=0
х₁,₂=<u>2⁺₋√(4+12) </u>=<u>2⁺₋4 </u><u />
2 2
х₁=3 х₂=-1
нас интересует только х=3, т.к. точка В лежит справа от ОУ.
у=-2*3=-6
(.)В (3;-6)
(x²-4)/(x²+5)≥0
x²+5>0 при любом х⇒x²-4≥0
(x-2)(x+2)≥0
x=2 x=-2
+ _ +
---------------[-2]-----------[2]--------------------
x∈(-∞;-2] U [2;∞)
<span>1)arcsin 0 =0
2)arccos 1= 0 ;
3)arcsin√2/2 =π/4 ;
4)arccos 3 не существует угол косинус </span><span>которой =3 </span><span>;
5)arcsin (-1) = -π/2 ;
6)arccos(-√3/2) = π -π/6 = 5π/6 ;
</span><span>7)arctg 0 = 0 ;
8)arctg 1 =π/4 ;
9)arctg(-√3) = - π/3 ;
10)arcctg(-√3/3) = </span><span><span>π -π/3= 2π/3 </span> ;
11)arcsin(-1/2)+arccos 1 = -π/6 +0 = -π/6 ;
12) (arcsin -1)/2+ arccos 1 = -π/4+0= -π/4;
13)cos ( arccos 1) =1;
14)sin(arcsin√2/2) =</span><span>√2/2;
15)arcsin (sin π/4) =arcsin(</span><span>√2/2) </span>=<span>π/4 ;
16)arccos ( cos(-</span><span>π/4))=</span><span>arccos ( cos(π/4))=</span><span><span>arccos (√2/2<span>))=π/4 ;
</span></span> 17)cos (arcsin(-1/3))=cos(arccos(√8/3)=</span><span><span><span>√8/3 </span>=2√2/3 ;
18)tg(arccos(-1/4)) =tq(arctq(-√15) = - √15; 1+tq²α= 1/cos²α
19)sin(arcctg(-2)) =sin(arcsin(1/√5)=1/√5 ;
20) arcsin(cos π/9)</span> =arcsin(sin(π/2 - π/9))=arcsin(sin7π/18) =</span><span><span>7π/18</span>.
</span>
X=π/3+y
(1+cos2x)/2+(1+cos2y)/2=-3/4
2+cos2x+cos2y=-3/2
cos2x+cos2y=-7/2
2cos(x+y)*cos(x-y)=-7/2
cos(x+y)cos(x-y)=-7/4
cos(2y+π/3)cosπ/3=-7/4
1/2cos(x+y)=-7/4
cos(x+y)=-7/2
нет решения,т.к. -7/2∉[-1;1]