Ну а) D(f)=(-1;1)
Б)не помню
В) точка 0
Г)функция возрастает (0;2) и убывает (-2;0)
Е) точка 1 но это не точно
Сумма ууглов выпуклой много угольник определяется по формуле $=180×(n-2)=3240 , следовательно n=20 . Ответ это двадцати угольник
В треугольнике один из углов равен 180-156=24°,другой -- 180-130=50°
Внешний угол треугольника равен сумме двух других углов,не смежных с ним. x=50+24=74°
Два треугольника PQC и PDC, общая сторона PC = x,
1 случай.
Сумма углов Ф = PQC и PDC равна 180<span>°, если PQCD выпуклый четырехугольник, поэтому
12^2 + 4^2 - 2*4*12*cos(Ф) = x^2; (x = PC)
</span>12^2 + 12^2 + 2*12*12*cos(Ф) = x^2;
Отсюда
3*(12^2 + 4^2) - 2*12*12*cos(Ф) = 3*x^2;
Поэтому
5*12^2 + 3*4^2 = 4*x^2;
x^2 = 196;
x = 8√3;<span>
2 случай.
Если PQ и DC пересекаются, при этом углы Ф = PQC и PDC равны (опираются на дугу PC)
</span>12^2 + 4^2 - 2*4*12*cos(Ф) = x^2; (x = PC)
12^2 + 12^2 - 2*12*12*cos(Ф) = x^2;
x^2 = 96;
x = 4√3;
Крайне неудобный интерфейс, набирать решения просто невозможно. А уж этот корень из 3, в строке x = 8√3; навсегда переехавший на другую строчку - это просто смешно. Я полчаса боролся, и победить сумел только, скопировав целиком строку из другого места.
А, еще и градусы съехали... вот не буду исправлять, пусть виновные любуются...
<span>A2. В наклонном параллелепипеде
ABCDA1B1C1D1 боковое ребро равно 16. Расстояние между ребром AA1 и рёбрами BB1,
DD1 и СС1 равны 8, 15 и 17. Вычислите объём</span>
<span>Имеем по условию, что
AB=8, AD=15, AC=17. 17*17=15*15+8*8, следовательно, треугольник ABC
прямоугольный, ABCD-прямоугольник. Объём параллелепипеда равен произведению
площади основания на высоту, то есть AB*AD*AA1=8*15*16=1920.<span>
Ответ:
V=1920</span></span>
<span>A3. Основанием призмы ABCA1B1C1 является равносторонний
треугольник. Вершина A1 проектируется в центр этого основания, ребро AA1
составляет с плоскостью</span>
основания угол "фи" найдите
объём призмы, если её высота h.
<span>Пусть точка H-проекция точки AA1 на основание, A1H=h-высота
призмы, угол A1AH равен фи. Объём призмы равен произведению площади основания
на высоту. Осталось найти площадь основания. AH=h*ctg "фи", c другой
стороны, AH это 2/3 от высоты основания. Пусть высота основания(треугольника
ABC) AD, она равна a*sqrt3/2, где a-cторона основания. Тогда AH=a*sqrt3/3=h*ctg "фи". a=sqrt3*h*ctg "фи".<span>
</span>Площадь
равностороннего треугольника равна a*a*sqrt3/4=3ctg^2
"фи"*h^2*sqrt3/4.<span>
Объём
равен 3sqrt3/4*ctg^2 "фи"*h^3.
Если
словами, то получился объём "3 корня из 3 умножить на котангенс в квадрате
фи умножить на h в кубе делить на 4.</span></span>
<span>B1. Основанием наклонного параллелепипеда служит прямоугольник со
сторонами а и b; боковое ребро с образует со сторонами основания углы в 60°.
Определить объём параллелепипеда</span>
1) находим угол наклона бокового ребра к плоскости. <span>
опускаем высоту из вершины параллелепипеда к его стороне.
через прямогуг. треугольник (угол 60, гипотенуза=с) находим катет. Высота =
корень (3)/2.
опускаем высоту из вершины параллелепипеда к его основанию.
имеем прямоуг. треугольник с катетом, равным этой высоте и гипотенузой с.
находим синус угла. он равен корень (3)/2. следовательно, угол равен 60
градусов.
<span>2) объем параллелепипеда равен произведению 3-х его
измерений: V= а*b*с.</span></span>