НОД (54,63)
54 2
27 3
9 3
3 3
1
63 3
21 3
7 7
1
НОД=3*3=9
1440м/мин.=1440м/60 сек= 24 м/сек
Делим сложную фигуру на три простых. Имеем:
1. S = 1*1 = 1 кв.см
2. S = 1*2 = 2 кв.см
3. S = 2*3 = 6 кв.см
S фигуры = 1+2+6 = 9 кв.см
9:1=9; 9:9=1; 90:1=90;90:90=1;40:4=10;40:10=4;100:4=25;400:100=4
№1
1. x параллельна y - отношение эквивалентности:
а) x параллельна x (рефлексивность)
б) x параллельна y ⇒ y параллельна x (симметричность)
в) x параллельна y, y параллельна z ⇒ x параллельна z (транзитивность)
2. x пересекает y не является отношением эквивалентности, т.к. это отношение не транзитивно: если x параллельна z, а y пересекает обе прямые, то (a,y) и (y,z) находятся в отношении, а (x,z) - нет.
3. x перпендикулярна y не является отношением эквивалентности, т.к. это отношение не рефлексивно: прямая не является перпендикулярной сама себе.
№2
Отношение равенства есть отношение эквивалентности: оно рефлексивное (отрезок равен сам себе), симметричное (равные отрезки взаимозаменяемы) и транзитивное (a=b, b=c ⇒ a=c).
Отношение "короче" не является отношением эквивалентности, т.к. не выполняется следующие требуемые отношения:
- оно не рефлексивное (отрезок не может быть короче себя самого)
- оно не симметричное (если один отрезок короче другого, то из этого не следует, что второй отрезок короче первого)
На самом деле, отношение "короче" является отношением строгого порядка.
№3
Всего существует 4 различных остатка при делении на 4: 0, 1, 2 и 3.
Т.к. мн-во X содержит 10 последовательных чисел, то все эти классы эквивалентности будут представлены.
Представители классов - например, первые 4 числа множества (они дают остатки 1, 2, 3 и 0 соответственно).