X+200 ----------100%
200 ----------- 15% 15(x+200)=200·100
x=200·100/15 - 200 x=4000/3 (г)
Применить формулу дифференцирования произведения - u=x^3 +10
b=x^3,
тогда
производная f(x)=производная u *b +u* производнаяb=3x^2*x^3 + (x^3 +10)*3x^2=3x^5 + 3x^5 +30x^2=10x^5 +30x^2
= (sin(540°+60°)+ tg(450+30))cos(360-30)=(-sin60-ctg30)cos30=-1,5
2^2n*6^n/2^2*4^n*6^n=2^2n*6^n/2^2*2^2n*6^n=2^(2n-2-2n)*6^(n-n)=2^(-2)*1=(1/2)^2=1/4=0,25
F(x)=x³-x²
Поведение на бесконечности:
при х⇒-∞ y⇒-∞
при х⇒∞ y⇒∞
Точки пересечения с осью х:
у=0
x³-x²=0
x²(x-1)=0
Произведение равно 0, когда хотя бы один из множителей равен 0
x₁=0
x₂-1=0
x₂=1
(0;0) (1;0)
Точки пересечения с осью у:
х=0
у=0
(0;0)
Находим экстремуму функции. Производную приравниваем нулю
y'=3x²-2x
3x²-2x=0
x(3x-2)=0
x₁=0
3x₂-2=0
x₂=2/3
Отмечаем найденные точки на числовой прямой и находим знак производной в интервалах
+ - +
-----------------₀----------------₀------------------->
0 2/3
Производна меняет знак с плюса на минус в точке х=0. Значит, это точка максимума.
f(0)=0
Производна меняет знак с минуса на плюс в точке х=2/3. Значит, это точка минимума.
f(2/3)=(2/3)³-(2/3)²=8/27-4/9=(8-4*3)/27=-4/27
Ищем наклонные асимптоты (если вы их ищите)
Это означает, что наклонных асимптот нет.
Строим график