Вычислим общий вес всех гирь. Он равен 30*62+31=1891. Это число разлагается на простые множители следующим образом: 1891=31*61. По условию на третьем месте стоит гиря, вес которой является делителем суммы весов двух предыдущих гирь. т. е. делителем числа 61+1=62. Поскольку 62=2*31, то это могут быть гири весом в 2 или 31 грамм. Допустим, что на третьем месте стоит гиря весом 31 грамм. Но, на последнем месте должна стоять гиря весом x грамм, являющаяся делителем числа 1891-x, т. е. являться простым множителем числа 1891. Поскольку все они уже стоят на предыдущих позициях, то следовательно приходим к противоречию и на третьей позиции может стоять только гиря весом 2 грамма.
Ответ: 2.
Ответ нет, по теор Виета x1*x2=5, а это значит , что либо оба корня >0, либо оба корня <0
A(n): -4; 2; 8; ...
d= a₂-a₁= 2-(-4)= 2+4=6
a₈= a₁+7d
a₈= -4+7*6= -4+42=38