Думаю, ты соорентируешься
при x∈(-∞,-1) y'<0 ⇒ функция убывает в этом промежутке
a-5>-∞ ∧ a+3<-1
a>-∞ ∧ a<-4
<span>a∈(-∞,-4)</span>
Условие не полное, максимум, который можно "выжать" :
Поскольку бассейн в итоге пуст, то это значит, что выливается больше, чем вливается, т.е. производительность выливающей трубы больше производительности заливающей трубы.
С одной стороны 1/3:8=1/24- совместная производительность двух труб.
С другой стороны совместная производительность двух труб это производительность выливающей трубы минус производительность заливающей трубы.
х-время наполняющей трубы на<span> наполнение </span><span>бассейна, 1/х-ее производительность
</span>у-время сливающей трубы на слив бассейна, 1/у- ее производительность
1/у-1/х=1/24 домножим на 24ху
24х-24у=ху
24х-ху=24у
х(24-у)=24у
х=24у/(24-у)
Ограничение
24-у>0 и у>0
у<24
у∈ (0;24)
Это общее решение.
Конкретных решений бесконечное множество
Например:
2 и 2 2/11
8 и 12
9 и 14,4
15 и 40
Скорее всего- Вы не верно условие переписали.
Найти промежутки возрастания и убывания функции, а также точки максимума и минимума. y= x^2*e^(-x^2)
Найдем производную функции
y' =(x^2*e^(-x^2))' = (x^2)' *e^(-x^2)+x^2*(e^(-x^2))' = 2x*e^(-x^2) -x^2*2x*e^(-x^2) =
=2xe^(-x^2)(1-х^2)
Найдем критические точки
y' =0 или 2x*e^(-x)(1-х^2) =0
x1=0 (1-х)(1+x)=0 или х2=1 x3 = -1
На числовой оси отобразим знаки производной
..-... 0..+.. 0....-....0...+...
--------!--------!----------!--------
......-1....... 0 .......1........
Поэтому функция возрастает если
х принадлежит (-1;0)U(1;+бесконечн)
Функция убывает если
х принадлежит (-бескон;-1)U(0;1)
В точке х=-1 и х=1 функция имеет локальный минимум
y(-1) = (-1)^2*e^(-(-1)^2) = e^(-1) =1/e = 0,37
y(1) = (1)^2*e^(-(1)^2) = e^(-1) =1/e = 0,37
В точке х= 0 функция имеет локальный максимум
y(0) = 0^2*e^(-0^2) = 0
Корень из 10800=60 корень из 3