При делении получится некоторый многочлен степени n:
Избавимся от знаменателя:
Раскроем скобки в правой части:
Коэффициенты при нечётных степенях должны быть равны нулю, а коэффициенты при чётных степенях должны быть равны 1:
<var>a_0=1</var>
<var>a_0+a_1=0</var><var />
<var>a_0+a_1+a_2=1</var>
...
, при чётном n
, при нечётном n
...
<var>a_n=1</var>
Отсюда получаем, что , , , , и так далее, коэффициенты с нечётными индексами равны -1, а коэффициенты с чётными индексами равны 1.
Так как <var>a_n=1</var><var>, то очевидно, что n должно быть чётным, при этом при любом чётном n будут существовать корректные наборы коэффициентов a_i.</var>
Ответ: при любом чётном n.