Трое рабочих, работая совместно, могут выполнить заказ за 42 минуты. Первый из них, работая один, может выполнить работу вдвое
Трое рабочих, работая совместно, могут выполнить заказ за 42 минуты. Первый из них, работая один, может выполнить работу вдвое медленнее второго и на 2 часа скорее третьего. За сколько времени может выполнить заказ каждый из них, работая отдельно?
Пусть А - объём работы, которую надо выполнить. Пусть второй рабочий выполняет работу за время t ч, тогда первый - за время 2t ч, а третий - за 2t+2 часа. Тогда за 1 час первый выполняет A/2t часть работы, второй - A/t часть работы и третий - A/(2t+2) часть работы. Работая совместно, рабочие за 1 час выполняют A/2t+A/t+A/(2t+2)=(3A(t+2)+At)/(2t^2+4t)=A*(4t+6)/(2*(t^2+2t))=A*(2t+3)/(t^2+2t). Тогда всю работу рабочие выполнят за время A/(A*(2t+3)/(t^2+2t))=(t^2+2t)/(2t+3)=0,7 (так как 42 минуты равны 0,7 часа). Решая полученное уравнение, находим t=1,18 ч. - время выполнения работы 2 рабочим. Тогда первый выполняет работу за 2*t=2,36 ч., третий - за 2,36+2=4,36 ч.