Угол DAB+BAC=180 угол A=180-110=70
Сумма углов любого треугольника равно 180, найдем угол C
угол C=180-(40+70)=70
<u>Дано: </u><em>Прямоугольная трапеция (АВСД)</em>
<em>Меньшее основ= 8 см, (АВ)</em>
<em>Меньш. бок стор.= 8 см (ВС)</em>
<em>Больш бок.стор. = 10 см (АД)</em>
<u>Найти</u>: <em>S трап.</em>
<u>Решение</u>
Меньшая боковая сторона прямоугольной трапеции - это высота.
Параллельная ей высота (АЕ), это катет прямоугольного треугольника, где большая боковая сторона (АД) - гипотенуза, а второй катет (ДЕ) - отсекаемый от большего основания отрезок (ДЕ). Этот отрезок равен разности основания, т.к. меньшая сторона и высота образуют квадрат с меньшим основанием и отрезком большего.
Т.е. большее основание (ДС) <span>делится на сторону квадрата(СЕ), равную меньшему основанию(ВС), и катет(ДЕ) прямоугольного треугольника.
</span>Этот катет равен квадратному корню их разности квадратов гипотенузы и второго катета: (ДЕ² = АД² - АЕ²)
√(10² - 8²) =√(100 - 64) =√36 = 6 (см) длина катета(ДЕ)
Большее основание (ДС = ДЕ + СЕ) = 6+8 = 14 (см)
Площадь трапеции равна произведению полусуммы оснований на высоту
(S = [(АВ+СД)/2]*ВC) = [(8+14)/2]*8 = (22/2)*8 = 88 (см²)
<u>Ответ</u>: 88 см²
BN=BM=10 (отрезки касательных к окружности из одной точки)
MO=OL=LC=CM=2
один катет треугольника = 10+2 = 12
AL=AN = x
по т.Пифагора
12² + (x+2)² = (10+x)²
12² = (10+x + x+2)(10+x - x-2)
12² = 2*(6+x)*8
6+x = 9
x = 3
другой катет = 2+3 = 5
площадь прямоугольного треугольника S = ab/2 = 12*5/2 = 6*5 = 30
(5,12,13) ---это стороны прямоугольного треугольника)))
Углы при основании равны
(180-84) / 2 = 48
Ответ 48 градусов
В 1 и 3 задаче найди диагональ по теореме Пифагора и раздели её на двое будет радиус
Во второй задаче радус умножал на два будет диагональ