СЛУЧАЙ 1.
Пусть одна из вершин треугольника лежит на первой прямой, а две другие - на второй прямой.
Первую вершину можно выбрать
способами, а две другие -
способами.
По принципу произведения всего сделать можно
треугольников
СЛУЧАЙ 2.
Если одна вершина лежит на второй прямой , а две другие - на первой , то первую вершину можно выбрать
способами, а две другие -
способами. Всего , по принципу произведения,
треугольников
Искомое кол-во треугольников:
Tg18π/5=tg(3π+3π/5)=tg3π/5=tg(π-2π/5)=-tg2π/5
(cos pi/4*cos 2x + sin pi/4*sin 2x) - √2sinx = √2(sin2x + 1)
2(√2/2*cos 2x + √2/2 *sin2x) - √2sinx = √2(sin 2x +1);
2*√2/2 (cos 2x + sin 2x) - √2sinx = √2(sin 2x +1);
cos2x + sin 2x -sinx = sin 2x +1;
1 - 2sin^2 x - sinx = 1;
-sinx(2sinx+1)=0;
1) sinx = 0; x1=pin, n---Z.
2) 2sinx+1=0; sinx= -1/2; x2=(-1)^n(-pi/6)+pin, n---Z.