X = pi/6;
8(sin^2 x - cos^2 x) = - 8(cos^2 x - sin^2 x) = - 8*cos(2 x)=
= - 8 *cos(2*pi/6) = - 8* cos(pi/3) = - 8 * 1/2 = - 4
Мода - число, встречающееся в ряду наибольшее количество раз. Здесь все числа встречаются по одному разу. Моды нет (или равна любому числу)
1) F '(x)=1/3 - (4x^(-1)) ' = 1/3 + 4x^(-2)=1/3 + 4/x^2. (По-видимому, в условии описка:
f(x) должна равняться 1/3 + 4/x^2). Так как х в знаменателе, х не=0, т.е. на интервале (-беск; 0) F(x) является первообразной для f(x)
2) a) не понятно; б) F(x)=(3sin2x)/2 + C. По условию х=pi/4; y=0 - это F(x). Тогда
(3sin(pi/2))+C=0, 3+C=0, C=-3. Отсюда F(x)=(3sin2x)/2 - 3
3) a) S=интеграл от 1 до 3 (x^3)dx = (x^4)/4 от 1 до 3 = 81/4 - 1/4 =80/4=20
б) найдем пределы интегрирования x^2-3x+4=4-x, x^2-2x=0, x=0; 2
Прямая будет выше параболы на этом отрезке, поэтому
S= интеграл от 0 до 2 (4-x-x^2 +3x-4)dx= интеграл от 0 до 2 (-x^2+2x)dx=
=(-x^3/3 +x^2) от 0 до2 = -8/3 +4 = 1 целая 1/3
Пусть х - количество коров после их возрастания.
тогда (х-60) - прежнее кол-во коров.
15*х - общее кол-во получаемого молока после повышения стада и удоя
12,8*(х-60) - прежнее кол-во получаемого молока.
Тогда по условию составим уравение:
3sin x * cos x - sin ^2 x=0
sin x * (3 cos x - sin x)=0
sin x =0 или (3 cos x-sin x)=0 /делим на cos x не равный 0
x=Пн или 3 - tg x=0
tg x=3
x=arctg3+Пн