Дано
h = 82 м
m = 1,2 кг
E - ?
-------------------------------
потенциальная энергия тела в поле силы тяжести
E = mgh
E = 1,2*82*9,8 = 964,32 ≈ 960 Дж
Площадь тетради и стола должен измерить сам. Пусть S1- площадь тетради, S2-площадь поверхности стола. Давление P=760 мм рт ст=760*133,3=1,01*10^5 Па F1=P*S1 F2=P*S2
Ξ = 6 В
r = 0.1 Ом
R = 11.9 Ом
t = 600 c
Q - ?
ξ = IR + Ir = I(R+r) => I = ξ/(R +r) = 6/12 = 0.5 A
Q = I²Rt = 0.25*11.9*600 = 1785 Дж
1)
p * V = m * R * T / M
p = m * R * T * V / M
p = 0,200 г * 8,31 Дж/(моль*К) * 340 К * 1*10⁻³ м³ / 28*10⁻³ кг/моль ≈ 20 Па
2)
V₁ / T₁ = V₂ / T₂
V₁ / T₁ = (V₁ + ΔV) / T₂
V₁ * T₂ = (V₁ + ΔV) * T₁
V₁ * T₂ = V₁ * T₁ + ΔV * T₁
V₁ * T₂ - V₁ * T₁ = ΔV * T₁
V₁ * (T₂ - T₁) = ΔV * T₁
V₁ = ΔV * T₁ / (T₂ - T₁)
V₁ = 2*10⁻³ м³ * 310 К / (323 К - 310 К) ≈ 4,8*10⁻² м³ = 48 л
Качественная картинка - это треть всей работы. Поэтому - см. вложение.
Вторая треть - не наделать ошибок, используя достаточно формализованный способ составления системы уравнений в методе контурных токов. И еще одна треть дела - не ошибиться в арифметике, потому что в подобных расчетах принято проводить проверку методом баланса мощностей, который при малейших некорректностях имеет неприятное свойство не сходиться.
1. На картинке отлично просматриваются три независимых контура, поэтому в каждом из них "запускаем" контурные токи (I₁₁, I₂₂, I₃₃), произвольно выбрав их направление. Я люблю выбирать направление по часовой стрелке.
2. В каждой ветви проставляем токи (I₁, I₂, ... I₅), причем их направления выбираем совершенно произвольно. Если наш выбор был неверен, то всего лишь получим значение тока с минусом. Если в контуре есть источники, то я всегда выбираю направление тока, совпадающее с направлением ЭДС - так удобнее потом проверять баланс мощностей.
3. Обходим каждый контур по направлению его контурного тока и записываем уравнение. В левой части будет находиться произведение контурного тока на сумму всех сопротивлений в контуре за вычетом произведений соседних контурных токов на так называемые сопротивления связи, т.е. общие для пар контуров, через которые эти соседние контуры протекают. Вот для этой цели мы и запустили все контурные токи в одном направлении - чтобы механически делать вычитание, а не думать о знаках. В правой части уравнения будет записана алгебраическая сумма ЭДС источников в контуре. Знак плюс берется, если направление контурного тока совпадает с направлением ЭДС, минус - если направлено в обратную сторону.
4. Составим уравнение для контура с током I₁₁
I₁₁(R₁+R₃+R₂) - это произведение контурного тока на сопротивления всех резисторов в контуре;
I₂₂R₂ - это произведение смежного контурного тока на сопротивление связи;
I₃₃R₁ - это произведение еще одного смежного контурного тока на сопротивление связи;
E₁-E₃+E₂ - это алгебраическая сумма ЭДС в контуре.
Составляем из полученных компонентов уравнение:
I₁₁(R₁+R₃+R₂)-I₂₂R₂-I₃₃R₁=E₁-E₃+E₂
Подставляем числовые значения: 6I₁₁-2I₂₂-2I₃₃=36
5. По этой же схеме составляем уравнения для остальных контуров
I₂₂(R₂+R₅)-I₁₁R₂=-E₂; 8I₂₂-2I₁₁=-36
I₃₃(R₄+R₁)-I₁₁R₁=-E₁; 6I₃₃-2I₁₁=-36
6. Совместно решаем полученную линейную систему трех уравнений с тремя неизвестными
8I₂₂-2I₁₁=-36 → I₂₂=(I₁₁-18)/4;
6I₃₃-2I₁₁=-36 → I₃₃=(I₁₁-18)/3;
6I₁₁-2(I₁₁-18)/4-2(I₁₁-18)/3=36 → I₁₁=90/29 ≈ 3.103 (A)
I₂₂=(90/29-18)/4=-108/29 ≈ -3.724 (A)
I₃₃=(90/29-18)/3=-144/29 ≈ -4.966 (A)
7. Находим токи в ветвях, как алгебраическую сумму контурных токов.
I₁=I₁₁-I₃₃=90/29-(-144/29)=234/29 ≈ 8.069 (A)
I₂=I₁₁-I₂₂=90/29-(-108/29)=198/29 ≈ 6.828 (A)
I₃=-I₁₁=-90/29 ≈ -3.103 (A)
I₄=I₃₃=-144/29 ≈ -4.966 (A)
I₅=I₂₂=-108/29 ≈ -3.724 (A)
8. И - момент истины. Проверка расчета по методу баланса мощностей.
Его смысл в том, что энергия, отданная источниками, должна полностью рассеиваться на элементах в цепи, т.е. сумма произведений ЭДС источника на отдаваемый им ток, должна равняться сумме произведений сопротивлений на квадрат проходящего через них тока. Σ(EI)=Σ(I²R)
Σ(EI) = 36*234/29+36*198/29+36*(-90/29) = 36(234+198-90)/29 = 36×342/29 = 12312/29 ≈ 424.552 (Вт)
Σ(I²R) = 2×(234/29)²+2×(198/29)²+2×(90/29)²+4×(144/29)²+6×(108/29)² =
(2/29²)×(234²+198²+90²+2×144²+3×108²) = 357048/841= 12312/29 ≈ 424.552 (Вт)
Проверка сошлась - обе части равны 12312/29. Решение верно.