Надо провести высоту к основанию(она же будет медианой(делить основание на 2 равных отрезка) и биссектрисой угла, который находится напротив основания)
<span>теперь у нас есть 2 равных прямоугольных треугольника:
рассмотрим один из них - боковая сторона р/б это гипотенуза,а
один из его острых углов равен половине угла р/б при вершине.
84/2=42*
теперь по т.синусов мы можем найти катет, который равен половине основания р/б(синусА=противолежащий катет/гипотенуза):
синус 42=0,</span><span>67 (округленно)
0,67=катет/20
катет=20*0,67
катет=13.4 см
Основание р/б=2* 13.4
</span>Основание р/б=<span>26.8</span><span>
периметр = 2*боковая сторона+основание
периметр=2*20+26.8
периметр=66.8см
</span>
На рисунке видно, что AD- биссектриса. По свойству биссектрисы имеем соотношение
Т.к. ΔАВС - равнобедренный, то АВ = ВС = 2КВ = 2ВЕ
Следовательно, ΔАВЕ = ΔСКВ (По равенству двух сторон и общего угла ∠АВС между ними).
Тогда: АЕ=СК и ∠ВАЕ = ∠ВСК
Кроме того, в ΔАЕС и ΔАКС:
АС - общая, АЕ = КС, АК = СЕ
То есть ΔАЕС = ΔАКС по трем сторонам.
Тогда ΔАОС - равнобедренный и АО = ОС
Так как АЕ = КС и АО = ОС, то: ОК = ОЕ.
Таким образом, ΔАОК = ΔСОЕ по трем сторонам.
Прямой угол опирается на диаметр. Диаметр описанного круга равен гипотенузе, поэтому его радиус это половина диаметра, т.е. 10/2=5 /см/
Ответ 5см
1) Рассмотрим треугольник АОВ прямоугольный
(т.к. по свойству ромба диагонали пересекаются под прямым углом)
Высота, выходящая из прямого угла треугольника, делит этот треугольник на подобные треугольники!
следует треугольник ОКВ подобен АОВ! следует КВ/OB=OK/OA
(OB=OД=8),
мы можем найти KB из треугольника OKB (по т.Пифагора)
KB"2=64-48=16; KB=4
(подставим все значения и найдём OA):
4/8=4 корня из 3/OA
ОА = 4 корня из 3*8/4=8 корней из 3
AC=2AO=16 корням из 3
из треугольника АОВ найдём AB = корень из (64+192)=корень из 256 = 16