y=-0,5х+4 k1=k2,b1≠b2
y=-0,5x+3(любое число,кроме 4)
<span>2(x-4)=(x+1)-7 2x-8=x+1-7 2x-x=1+8-7 x=2</span>
Исследуем функцию с помощью производных: 1 производная y'(x)=3*x^2-3 (обычная табличная, от константы равна нулю, а для x^3 равна 3 умножить на основании в степени на 1 меньше). Она равна нулю при x1=-1 (локальный максимум, производная меняет знак с + на -) x2=1(локальный минимум, производная меняет знак с - на +).
Вторая производная y''(x)=6*x, равна нулю при х3=0, то есть при отрицательных х выпуклость вверх, при положительных выпуклость вниз. Графики приложены.