В правильной пирамиде все боковые грани -равнобедренные треугольники. Следовательно углы при основании боковых граней равны между собой и равны (180-60)/2=60. Следовательно боковая грань -равносторонний треугольник, то есть сторона основания равна ребру и равна 5.
Дано: Δ ABC и <span>Δ ADC
AB=AD</span> <span>
</span>∠ BAC=<span>∠CAD
Доказать: </span>Δ ABC=<span>Δ ADC
Решение:
</span>AB=AD, ∠ BAC=<span>∠CAD - по условию.
</span>AC - общая.
Значит, Δ ABC=<span>Δ ADC по первому признаку равенству треугольников.</span>
Лесостепь - Петропавловск
Степь - Караганда, Актобе, Кокпетау, Павлодар
Полупустыня - Тараз
Пустыня - Шымкент, Кызылорда, Атырау
Ответ:
Объяснение:
Обратим внимание на то, что ON и OM являются перпендикулярами к катетам прямоугольного треугольника, поскольку нам необходимо найти расстояние KN и KM.
Рассмотрим отрезок NO. Он является перпендикуляром к CB. Угол ACB также вляется прямым по условию задачи. Таким образом, треугольники ABC и OBN - подобны по признаку равенства углов (см. подобие треугольников). Угол В - общий, а, поскольку CA и NO являются перпендикулярами к CB - то остальные углы также равны (один прямой, второй равен 180 градусов минус сумма остальных углов, равенство которых мы уже доказали).
Коэффициент подобия треугольников равен соотношению BO к BA. Поскольку точка О - точка касания медианы прямоугольного треугольника к гипотенузе, то есть AO = OB, то коэффициент подобия будет равен 1:2.
Откуда ON = CA / 2 = 9 / 2 = 4,5
Расстояние же KN найдем по теореме Пифагора.
KN = √(4,52 + 62 ) = 7,5 см
Аналогично, найдем расстояние до второго катета:
OM = CB / 2 = 12 / 2 = 6
KN = √( 62 + 62 ) = √72 = 6√2 см
Ответ: 7,5 см, 6√2 см