3x^2-4x+4=0
Если, конечно я правильно понял задание
)))))))))))))))))))))))))))))))))
<span><em>Боковые стороны KL и MN трапеции KLMN равны соответственно 15 и 12, а основание LM=3. Биссектриса угла NKL проходит через середину стороны MN.<u>Найдите площадь трапеции</u></em>.
<span>Пусть биссектриса угла NKL пересекает сторону МN в точке Е.
</span>Прямая КЕ пересекает продолжение меньшего основания LM в точке С.
Прямая LC параллельна KN
<span>∠LCK=∠CKN как накрестлежащие при пересечении параллельных прямых секущей СК.
</span><span>Но∠СКN=∠CKL по условию ( СК -биссектриса угла NKL)
</span>Углы LKC=LCK
Треугольник KLC - равнобедренный.
КL=LC=15
МС= LC-LM=15-3=12
<span>∠ СМЕ=∠ЕNK как накрестлежащие при параллельных LC и KN и секущей MN.
</span>ME=EN по условию.
Углы при Е равны как вертикальные.
<u>Треугольники МСЕ и КNE равны</u> по стороне и прилежащим к ней углам KN=MC=12
Из вершины L проведем LH параллельно MN
NH=LM=3 как стороны параллелограмма LMNH
<span>LH=MN=12 как стороны параллелограмма ( по построению)
</span>КН=KN-NH
КН=12-3=9
В треугольнике КLH <u>отношение сторон</u> КН:LH:KL=3:4:5.
Это отношение прямоугольного (египетского) треугольника. (можно проверить по т. Пифагора)
<span>⇒⊿ КLH прямоугольный, LH перпендикулярна КN и является высотой трапеции KLMN
</span><em>Площадь трапеции равна произведению высоты на полусумму оснований</em>.
S=LH*(LM+KN):2
<span><em>S (</em><span><em>KLMN)</em>=12*(3+12):2=<em>90 ( единиц площади)</em></span></span></span>
0,5 = 1/2
4/15
4/11
--------------
Можно приводить к общему знаменателю
НОК(2,15) = 30
НОк(30,11)=330
1/2 = 165/330
4/15 = 4*20/(15*20)=80/330
4/11 = 4*30/(11*30)=120/330
80/330<120/330<165/330
4/15<4/11<1/2
16)
Найдем некоторые точки функции:
х = 0, у = 0
x = 1, y = 1
x = 4, y = 2
Найдем некоторые точки прямой x - 2y = 0:
х = 0, у = 0
х = 4, у = 2
Графики во вложении.
Ответ: (0;0), (4; 2)
17)
18)