Формула 1 + 1/sin²α = ctg²α
ctg²α -1=1/sin²α
sin² α= 1/ (сtg²α-1) = 1/(4-1)=1/3
22cos²x+4sin2x-7cos²x-7sin²x=0
7sin²x-8sinxcosx-15cos²x=0 /cos²x≠0
7tg²x-8tgx-15=0
tgx=a
7a²-8a-15=0
D=64+420=484 √S=22
a1=(8-22)/14=-1⇒tgx=-1⇒x=-π/4+πn
a2=(8+22)/14=15/7⇒tgx=15/7⇒x=arctg15/7+πn
1) x^2-2x-4x+8-(x^2-3x-x+3)=x^2-6x+8-(x^2-4x+3)=x^2-6x+8-x^2+4x-3=-2x-3
x=1(3/4)
-2*7/4-3=-14/4-3=-(14+12)/4=-26/4=-6(2/4)=-6,5
2)a^2-a-5a+5-(a^2-3a+2a-6)=a^2-6a+5-a^2+a+6=-5a+11=11-5a
a=-2(3/5)=-2,6
11-5*(-2,6)=11+13=24
3)x^2-3x-2x+6+x^2-5x+6x-30-2x^2+14x-26=2x^2-4x-24-2x^2+14x-26=10x-50
x=5,6
10x-50=10*5,6-50=56-50=6