Начальная скорость:
мм/с
м/с ;
Протон заряжен положительно, а электрон – отрицательно, это означает, что действующая на них сила Лоренца, перпендикулярная к скорости будет направлена в противоположные стороны, по отношению к скорости.
Для определённости, договоримся, что мы считаем, что заданное магнитное поле направлено от нас, т.е. входит в плоскость видимого изображения чертежа.
Сила Лоренца:
;
В обоих случаях – это будет одна и та же величина, поскольку модули зарядов электрона и протона – равны, и отличаются лишь знаком. Если (для определённости) обе частицы влетают в магнитное поле снизу, то согласно Маховичкам Максвелла, сила Лоренца, действующая на протон, будет направлена по левую руку от вектора скорости и перпендикулярно ему.
Аналогично, сила Лоренца, действующая на электрон, будет направлена по правую руку от вектора скорости и перпендикулярно ему.
Центростремительное ускорение, которое получат частицы:
;
и
;
где
и
– массы протона и электрона соответственно.
Радиусы вращения частиц в магнитном поле найдём из кинематики вращательного движения:
;
;
Итак: радиус вращения протона:
;
А электрона соответственно:
;
Длина каждой окружности, это
, значит период обращения частиц:
,
соответственно для протона это:
,
а для электрона это:
;
Масса протона:
0.001 кг /
кг /
;
кг.
Масса электрона:
;
кг.
Заряд протона равен заряду электрона
Кл.
Значение индукции магнитного поля в задаче не указано, так что для определённости будем считать, что индукция составляет 1 наноТесла, т.е.
нТл
Тл.
Тогда получится, что:
радиус вращения протона:
;
м
мм ;
А электрона соответственно:
мм ; в 1837 раз меньше.
Период обращения протона будет:
,
а для электрона это:
мс ;
При увеличения значений индукции магнитного поля, как легко понять – радиусы и периоды будет уменьшаться во столько же раз, и, наоборот, при уменьшении магнитного поля – радиусы и периоды будут увеличиваться во столько же раз.