A^m*a^n = a^(m+n)
a^m / a^n = a^^(m-n)
a^m*b^m = (ab)^m
(a^m)^n = a^(mn)
3^17*6^16 / 18^15 = 3*3^16*6^16 / 18^15 = 3 * 18^16 / 18^15 = 3* 18^(16-15) = 3*18 = 54
8/х - 4/5х при х = 1,6 4/5 = 0,8 - в десятичных дробях
Task/25060814
---------------------
sinx +cosx =√2 ; || : √2
(1/√2)*sinx +(1/√2)*cosx = 1 ;
cos(π/4)*sinx +sin(π/4)*cosx =1 ; * * * sin(π/4)*sinx +cos(π/4)*cosx =1 * * *<span>
sin(x+</span>π/4) =1 ; * * * cos(x -π/4) =1 * * *
x+π/4 =π/2+2π*n ,n∈Z * * * x -π/4 =2<span>π*n ,n∈Z * * * </span>
x =π/4+2π*n , n∈Z . * * * x =π/4 +2π*n ,n∈Z * * *
<span>
ответ : </span>x =π/4 +2π*n ,n∈Z .
<span>
------- P.S. </span>-------
формула дополнительного(вспомогательного) угла :<span>
a*sinx +b*cosx =</span>√(a²+b²) sin(x +arctg(b/a)) <span>.</span>