У правильного треугольника все стороны равны и каждый из углов равен 60 градусов. Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрисс. Обозначим треугольник АВС, проведём биссектриссу угла А - АЕ и биссектриссу угла В - ВД. Они пересекутся в точке О. Биссектриссы правильного треугольника являются его высотами и медианами, значит ОД - медиана и высота и треугольник АОД - прямоугольный, сторона которого АД=1/2АС=17√3/2. Угол ОАД=60:2=30 градусов, а катет прямоугольного треугольника, лежащий против угла в 30 градусов равен половине гипотенузы, т.е. ОД (это радиус вписанной окружности) = 1/2АО. Обозначим ОД - Х, тогда АО=2Х. По теореме Пифагора:
АО²=ОД²+АД² (2Х)²=Х²+(17√3/2)² 4Х²=Х²+867/4 3Х²=867/4 Х²=289/4 Х=17/2=8,5. Значит радиус вписанной окружности =8,5.
Дерево и его тень – катеты в прямоугольном треугольнике, где угол между «тенью» и гипотенузой равен 37°. tan37° = h/10.2 ⇒ h = 10.2tan37° – искомая высота дерева.
h = 7.686 ≈ 7.7 (м).
Ответ: 7.7 м.
КЛ=НМ, КЕ=НЕ, угол AED равен углу BEC(КН||ЛМ секущие ЕЛ, МЕ) значит треуг.ЕМН=ЕЛК.
В параллелограмме противоположеные углы равны. Значит, угол Н=Л, а угол К=М. В треугольнике EКЛ угол К равен углу М тр-ка ЕНМ. Треугольник EМЛ- равнобедренный в нем угол М=Л. ЕЛК+ЕЛМ=ЕМН+ЕМЛ. Следовательно, в прямоугольнике КЛМН, угол Л=М, по признаку парал-ма противоположенные углы равны, угол Л=Н,К=М, а К=Л=М=Н=90* , следовательно это прямоугольник.
3 и 7 это части. Один угол 3х, второй 7х. Сумма этих углов равна внешнему углу при третьей вершине, т.е. 3х+7х=120 10х=120 х=12. Имеем углы 3*12=36град и 7*12=84град
АМС представляет собой прямоугольный треугольник (с прямым углом в вершине А), следовательно - АС=кор. кв (17^2-8^2)=кор. кв (289-64)=кор. кв (225)=15.
Следовательно гипотенуза АВ = кор.кв (15^2+5^2)= кор. кв (225+25)=кор. кв (250)= прибл.15,8 см