Центр описанной окружности<span> располагается на пересечении </span>серединных перпендикуляров<span>треугольника. Так как треугольник </span>равнобедренный<span>, то </span>биссектриса<span> и </span>серединный перпендикуляр, проведенные к основанию, совпадают.
<span>Следовательно, BO - </span>биссектриса<span> угла ABC.</span>
Тогда: ∠CBO=∠ABC/2=177°/2=88,5°
<span>Треугольник OBC - </span>равнобедренный, так как OB и OC - радиусы окружности и следовательно равны.
<span>По </span>свойству равнобедренного треугольника:
∠CBO=∠BCO=88,5°
<span>По </span>теореме о сумме углов треугольника:
180°=∠CBO+∠BCO+∠BOC
180°=88,5°+88,5°+∠BOC
∠BOC=3°
<span>Ответ: 3</span>
∠ADF- Вписаный угол, опирающийся на ту же дугу, что и центральный угол ∠AOF.
Градусная мера центрального угла в два раза больше градусной меры вписаного угла, если они опираются на одну и ту же дугу.
Таким образом ∠AOF= 63°*2=126°
<span><em>Четырехугольник может быть описан около окружности тогда и только тогда, когда </em><u><em>суммы</em></u><em><u> длин</u> его противоположных сторон равны.</em><em> </em></span>
<span>Трапеция - четырехугольник. Сумма оснований описанной трапеции равна сумме боковых сторон и <em><u>вдвое</u> больше средней линии</em>. </span>
<span>АВ+СD=2•8,5=17 см Трапеция равнобедренная, поэтому <em>АВ</em>=СD=<em>8,5</em></span>
Угол <em>ВАD</em>=∠СDA= <em>30°</em>, ⇒ высота <em>ВН</em> трапеции равна половине АВ.
<em>ВН</em>=8,5:2=<em>4,25</em> см
<span>Диаметр окружности, вписанной в трапецию, перпендикулярен её основаниям и равен её высоте. </span>
<span><em>R</em>=D:2=4,25:2=<em>2,125</em> см.<span> </span></span>
См. рисунок во вложении. Тангенс угла
равен отношению половины одной стороны к половине другой.
tg(a/2)=7*2:2*7*
tg(a/2)=1/
a/2=30
a=60
Меньший угол между диагоналями 60 градусов.
Больший 180-60=120