1). Биссектриса СК делит угол С на два равных: АСК и КСВ. Зная угол НСК между высотой и биссектрисой, находим угол АСН:
<ACH = <ACK - <HCK = 45 - 15 = 30°.
В прямоугольном треугольнике АНС находим оставшийся неизвестный угол А:
<A = 180 - ACH - AHC = 180 - 30 - 90 = 60°.
Зная углы А и С, находим неизвестный угол В:
<B = 180 - <C - <A = 180 - 90 - 60 = 30°.
Зная, что катет прямоугольного треугольника, лежащий против угла в 30 градусов равен половине гипотенузы, находим АС:
АС = 1/2 АВ = 1/2*14 = 7 см.
2) Поскольку в равнобедренном треугольнике углы при основании равны, находим угол А и С:
<A = <C = (180 - 120) : 2 = 30°
После построения высоты АН получаем прямоугольный треугольник АНС. Его неизвестный катет АН (наша высота) лежит против угла 30 градусов и равен половине гипотенузы:
<span>АН = АС : 2 = 12 : 2 = 6 см</span>
Если найти надо MВ - то она 10 , тк это равнобедренный треугольник , еслин надо найти гипотенузу - то она равна 100 , если площадь , то 50 ..
Объяснение:
1) поскольку углы А=С=45° то ∆ АВМ равнобедренный
2) в равнобедреному треугольнику медиана делит треугольник на две равных части
РS я думаю как-то так
<em>по свойству отрезков касательных, проведенных к одной окружности из одной точки, они равны. Поэтому боковые стороны 5х, а основание 2х+2х=4х, где х- коэффициент пропорциональности, тогда 5х=15. откуда х=15/5</em>
<em>х=3</em>
<em>тогда основание равно 4*5=</em><em>20/см/</em>