1) x^2-5x=0
x(x-5)=0
x=0 или
х-5=0
х=5
х1=0; х2=5
2) -2х^2+7х=0
х(-2х+7)=0
х=0 или
-2х+7=0
-2х=-7
х=-7÷(-2)
х=3,5
х1=0; х2=3,5
3) -7х^2+1,8х=0
х(-7х+1,8)=0
х=0 или
-7х+1,8=0
-7х=-1,8
х=-1,8÷(-7)
х=1,8/7
х1=0; х2=1,8/7
4) -2х^2-х=0
х(-2х-1)=0
х=0 или
-2х-1=0
-2х=1
х=1÷(-2)
х=-0,5
х1=0; х2=-0,5
5) -0,8х^2-9,2х=0
х(-0,8х-9,2)=0
х=0 или
-0,8х-9,2=0
-0,8х=9,2
х=9,2÷(-0,8)
х=-11,5
х1=0; х2=-11,5
6) -0,7х^2+х=0
х(-0,7х+1)=0
х=0 или
-0,7х+1=0
-0,7х=-1
х=-1÷(-0,7)
х=10/7
х1=0; х2=10/7
A)6x+8x-15x-20
б)2xy-5x^2-6y^2+15xy
в)а^2-5а-а^2+3а+2а-6
г)-
Треугольника S = 12, значит паралелограмма S = 24 по формуле: S = 1/2 ab (sin)α