1
(∛p-∛q)(∛p²+∛(pq)+∛q²)/(∛p-∛q) -∛(pq)=∛p²+∛(pq)+∛q²-∛(pq)=∛p²+∛q²
2
(√p+√q)(p-√(pq)+q)/(√p-√q) +√(pq)=p-√(pq)+q +√(pq)=p+q
4
∛(ab)(∛a-∛a²)/∛(ab) +∛a²=∛a-∛a²+∛a²=∛a
Решение во вложении.............
1) 16c²-49=0
(4c-7)(4c+7)=0
4c-7=0
4c=7
c1=7/4
4c+7=0
4c=-7
c1=-7/4
2) (8x-5)(8x+5)=0
x1=5/8
x2=-5/8
3) x(4/9x²-16)=0
x1=0
4/9x²-16=0
(2/3x-4)(2/3x+4)=0
2/3x=4
x2=6
2/3x+4=0
2/3x=-4
x3=-6
Sin 54- sin 18 = 2 sin (54-18 /2) *cos (54+18)/2=2 *sin18*cos72=2 sin^2(18)=1-cos36=
=1-(1+√5)/4
=(3-√5)/4
=3/4-√5/4